- 5. Joint Committee on Powder diffraction standards / A Pennsylvania Non-profit Corporation 1601. Park lane. Swarthmore, Pa. 19081. Printed in Philadelphia. 1975.
- 6. Руководство по рентгеновскому исследованию минералов / В.Н. Герасимов, Е.М. Боливо-Добровольская, Н.Е. Каменцев и др. // Л.: Недра, 1975. - 399c.
- 7. Михеев В.И. Рентгенометрический определитель минералов. М.: Гостехиздат, 1957. Т.1. 867с.
- 8. Михеев В.И., Сальдау Э.П. Рентгенометрический определитель минералов. -Л.: Недра, 1965. Т.2. 362c.

УДК 622.817.47

Е.Л. Звягильский, А.Ф. Булат, В.В. Лукинов И.А. Ефремов, В.Г. Ильюшенко, И.И. Пожитько, В.В. Бобрышев, Вас.В. Бобрышев

ГОРНО-ГЕОЛОГИЧЕСКАЯ ОЦЕНКА ОЖИДАЕМОЙ ЭФФЕКТИВНОСТИ РАБОТЫ ПОВЕРХНОСТНЫХ ДЕГАЗАЦИОННЫХ СКВАЖИН

Освітлено питання комплексної оцінки очікуємої ефективності поверхневих дегазаційних свердловин з урахуванням впливу геологічних та гірничотехнічних факторів

THE MINING-GEOLOGICAL ESTIMATION WATING EFFECTIVITY WORK OF SUPERFICIAL DEGASSING CHINKS

The question of complex estimation waiting affectivity of superficial degassing chinks with calculation of influence geological and mine-technical factors.

В условиях шахты им. А.Ф. Засядько, достаточно детально освещенных в работах [1, 2], бурение и обеспечение эффективной работы поверхностных дегазационных скважин (ПДС), является важной составной частью проекта ее комплексной дегазации. Разнообразные сочетания геологических и горнотехнических условий разрабатываемых угольных пластов и отдельных частей шахтного поля обуславливает широкий диапазон особенностей, проявляющихся в процессе эксплуатации ПДС: от многолетней и интенсивной работы с суммарным дебитом газа, превышающем 2–4 млн. м³, до краткосрочной и весьма неэффективной ((с дебитом 50–150 тыс. м³ (в течение всего эксплуатационного периода или даже с нулевым, как до, так и после их подработки лавами)) [3, 4].

В настоящее время практически все ПДС задаются в расчете на включение в работу лишь после подработки их стволов дегазируемыми лавами. В перспективе планируется организовать работу ПДС в два этапа.

На первом этапе организуется заблаговременная дегазация локальных газоносных структур шахтного поля с отбором свободного газа из трещиннопорового коллектора или газа, выделяющегося в результате инициирующего этот процесс гидроразрыва газоносных горизонтов или гидроимпульсного воздействия на них. На втором этапе — текущая дегазация угленосной толщи (УТ) после подработки ПДС лавой. Поэтому возникает актуальная задача прогнозной оценки эффективности работы ПДС на каждом из этих этапов: в условиях естественного и подработанного массивов горных пород.

Рассмотрим в укрупненном плане главные параметры, которые оказывают существенное влияние на прогнозную оценку ожидаемой эффективности работы ПДС. Эти параметры можно подразделить на три группы.

- 1). Природные, определяющиеся структурно-тектоническими и литолого-фациальными особенностями дегазируемого интервала УТ.
- 2). Горнотехнические, определяющиеся параметрами лавы, подрабатывающей ПДС, пространственным и временным соотношением ее столба с элементами формирующейся мульды сдвижения.
- 3). Технические, определяющиеся конструкцией ПДС и режимом ее эксплуатации.

В данной работе рассматривается влияние горно-геологических факторов (первой группы) на эффективность работы (ПДС).

Малые структурно-тектонические элементы (МСТЭ) шахтных полей, (как пликативные, так и дизъюнктивные), контролирующие распределение газа в УТ, достаточно полно описаны в работе [1], а методика построения карт ло-кальных структур по угольным пластам и породам описана в работе [5].

Далее остановимся только на количественной оценке уровней деформации, полученных породами в процессе формирования МСТЭ. Именно этими деформациями определяется интенсивность постдеформационного разуплотнения массива (ПДР) угленосной толщи и другие коллекторские свойства: максимальная газоемкость, газопроницаемость и самый главный параметр, определяющий конечный результат всего комплекса дегазацирннях работ — коэффициент извлечения запасов газа.

Для косвенной оценки ПДР предлагается использовать хорошо апробированный и в горном деле (охрана ответственных объектов при горных подработках), и в теории сопротивления материалов принцип радиуса кривизны деформируемого объекта. Чем меньше радиус кривизны, приобретенный каким-то ограниченным объемом материала под действием внешних сил, тем большие деформации они претерпевают. И определяется это прежде всего увеличением (уменьшением) объема деформируемого объекта, который можно выразить соответствующим коэффициентом приобретенной пустотности K_q :

$$K_q = \frac{V \div \Delta V}{V} \tag{1}$$

где V – исходный объем объекта, м³;

 ΔV — приращение объема объекта, полученное в процессе воздействия внешних, деформирующих сил, м³.

Любой материал, находящийся в твердой фазе, под действием внешних сил F в зависимости от их величины и времени воздействия t проходит различные хорошо известные [6] стадии деформации:

1). Упругая (без нарушения внутренней структуры с последующим полным восстановлением первоначального объема и формы объекта после прекращения действия внешних сил).

- 2). Пластичная (стадия "течения" материала с нарушением межмолекулярных связей, но без нарушения сплошности, т.е. неупругая стадия деформаций, на которой после прекращения действия внешних сил объект полностью не восстанавливает ни первоначальный объем, ни первоначальную форму).
- 3). Разрушения (материал деформируемого объекта расчленяется на разрозненные части (блоки), теряющие внутренние (атомарные и молекулярные) связи между собой), т.е. процесс образования трещин в деформируемом материале и смещения образовавшихся блоков.

Если отнести изложенную выше схему к процессу формирования структурно-тектонических элементов шахтного поля, то мы можем обнаружить в пределах даже одной такой структуры или ее отдельного элемента (например, замковая часть складки) все описанные выше стадии деформации образующих их пород.

В зависимости от физико-механических свойств деформируемых слоев в пределах даже одной части такой структуры (например, замковая часть пологой вторичной антиклинали) можно наблюдать все стадии деформации материала. Под воздействием одних и тех же внешних (например, сжимающих) сил слабо метаморфизованные аргиллиты реагируют пластичными деформациями (изгибы с раздувами или утонениями мощности слоев без разрывов сплошности). Более песчанистые и жесткие (алевролиты) слои – изгибами и микротрещиноватостью. А по мере роста деформирующих сил реакции толщи проявляются в виде послойных подвижек и щелевидных полостей расслоения. Песчаники, в зависимости от их мощности и прочности, а также времени действия деформирующих сил – упругими деформациями, выраженными пологими изгибами, аккумулирующими колоссальные запасы потенциальной энергии или (в критических случаях) – разрывами сплошности. При длительных (в геологическом масштабе) воздействиях деформирующих напряжений их энергия расходуется на уплотнение материала и структурные преобразования (например, на перекристаллизацию и катагенез), слагающих его минеральных зерен.

А при высоком темпе накопления деформационных напряжений их энергия, практически полностью, идет на блоковое разрушение песчаника, межблоковые подвижки с перераспределением полей напряжений и образованием обширных зон дробления в местах межблоковых швов.

Сочетание в пределах одной структуры разрушающих (хрупкие прочные песчаники) и пластичных (слабометаморфизованные аргиллиты) деформаций лежит в основе формирования структурно-тектонических газовых коллекторов (газовых ловушек). Прочные, хрупкие, мощные слои деформированных песчаников приобретают достаточно высокую трещинно-поровую пустотность и проницаемость. А вязкие, пластичные слои, перекрывающие их, образуют "покрышки" [7], обеспечивающие возможность накопления в разуплотненной толще газов, как за счет миграционных потоков глубинного происхождения, так и за счет термобарического преобразования собственного органического вещества в углеводородные газы.

При оценке качества таких ловушек необходимо учитывать, что максимальная их эффективность возможна лишь при строго определенных соотношениях

между величинами деформационных напряжений и физико-механическими свойствами пород потенциального коллектора и пород потенциальной "покрышки".

Для получения оптимального варианта такого типа коллектора напряжения деформаций должны иметь значения в максимально возможной степени превышающие пределы прочности слоев потенциального коллектора и в то же время ни в коем случае не превосходить допустимые значения для пластичных деформаций пород потенциальной "покрышки". В тех же структурах, где эти соотношения не выдерживаются, рассчитывать на образования газовых залежей бесперспективно.

Примером могут служить структуры Западного блока Кальмиусского рудника в предфлексурном поднятии и непосредственно в пределах Ветковской флексуры.

В зоне максимальных изгибов угленосной толщи в замке этой флексуры, где, например, в мощном песчанике l_1Sl_2 образовались многочисленные зияющие трещины, неоднократно вскрывавшиеся западными уклонами, существенных скоплений газа не отмечено. Перекрывающая их толща песчано-глинистых пород, ввиду больших деформационных изгибов, превышающих допустимый предел для пластичных деформаций, так же получила интенсивную трещиноватость. Это не позволило перекрыть потенциальный коллектор и удерживать в нем газовые скопления. Данное положение подтверждается и результатами детальной разведки поля шахты им. А.Ф. Засядько. По ее данным залегание поверхности метановых газов в зоне Ветковской флексуры понижается до 600÷650 м против 140÷200 м – на площади преимущественно моноклинального залегания. В то же время в положительной (куполовидной) структуре предфлексурного поднятия [1], характеризующейся плавными деформациями, не выходящими за пределы допустимых значений для пластичных деформаций, отмечены скопления углеводородных газов с пластовым давлением, близким к гидростатическому.

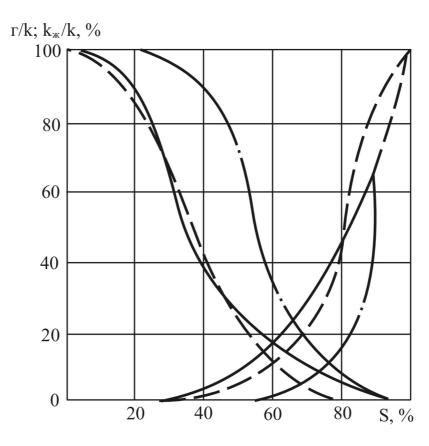
Они давали многократные фонтанирующие выбросы промывочной жидкости и водно-газового флюида из геологоразведочных скважин, заданных в пределах этой структуры. В конечном итоге, только близость интенсивности природных деформационных процессов к их теоретически оптимальным значениям для потенциального коллектора и в то же время для пород "покрышки" является главным показателем эффективности двуединого процесса образования структурно-тектонического коллектора и сохранения в нем газа. Без учета этого обстоятельства прогнозная оценка таких структур по газовому параметру обречена на большие ошибки.

Нами предложен метод косвенного учета и оценки постдеформационного разуплотнения угленосной толщи для различных частей локальных СТЭ шахтного поля на основе графо-аналитического анализа радиусов кривизны R угленосной толщи, определяющих интенсивность ее объемных деформаций. Коэффициент кривизны угольных и породных пластов K_{κ} , выражающийся отношением

$$K_{\kappa} = \frac{1}{R} \tag{2}$$

и особенно скорость изменения $V_{\partial e\phi}$. в пределах анализируемого участка шахтного поля, являются основными показателями интенсивности палеодеформационных процессов угленосной толщи. Они должны учитываться при решении всех горнотехнических задач: от оценки коллекторских свойств СТЭ и планирования комплекса дегазационных работ до задач, связанных с устойчивостью и охраной выработок от горного давления, а так же при оценке потенциальной опасности изучаемой части шахтного поля по проявлениям газодинамических явлений.

Применительно к оценке ожидаемой эффективности работы дегазационных скважин необходимо сделать некоторые дополнительные замечания. Связаны они с тем, что одинаковая по абсолютной величине постдеформационная разуплотненность массива может давать прямо противоположные результаты (в частности, по газооотдаче скважины) в зависимости от того, к какому типу структур она относится — положительному (антиклиналь) или отрицательному (синклиналь), или переходной от антиклинальной к синклинальной зоне, где, как известно [8], происходит смена знака напряжений и их величина достигает максимальных значений.


Хорошо известно, что между смежными положительными и отрицательными структурами происходит перераспределение фазовых составляющих флюида. В отрицательные структуры отжимается жидкая фаза (вода), в положительные – газообразная (метан).

Из нефтяной геологии [9] известно, что для различных типов коллекторов имеется строгая зависимость относительных фазовых проницаемостей для газа и жидкости (от соотношения этих фаз). Наглядной иллюстрацией этого утверждения является график, приведенный на рис. 1.

Особенно контрастно это взаимовлияние проявляется для коллекторов, представленных несцементированными песками и известняками, в несколько меньшей степени эта закономерность проявляется в песчаниках. Так, при 77% насыщенности флюида водой газопроницаемость известнякового коллектора падает до нуля, а песчаникового снижается до 10% от исходной. Соответственно при водонасыщаемости от 60% до 10÷12% (для известняка) и до 37% (для песчаника). Необходимо также отметить, что для условий Донбасса прямыми замерами установлено большое влияние на проницаемость коллектора термобарических условий. Эти результаты получены при производстве геологоразведочных работ на участке Чайкино – Глубокий. Особенно большие изменения проницаемости (более чем в 1000 раз) отмечаются при высоких значениях термобарических показателей. В то же время увеличение пластового давления в коллекторе без роста температуры приводит к существенному снижению его проницаемости.

Этот анализ показал, что наличие даже достаточно высокой пористости структурно-тектонического коллектора еще не является гарантией высокой эффективности работы дегазационной скважины. И это утверждение относится не только к проницаемости природного коллектора, но и к техногенному коллектора.

тору, сформировавшемуся в условиях подработки угленосной толщи. Проницаемость такого техногенного коллектора достигает 50 мд [10]. Однако, даже такая высокая проницаемость, оставаясь высокой и для жидкой фазы флюида, не гарантирует в условиях синклинальных структур высокую эффективность работы ПДС. Большой приток воды в ее ствол не компенсируется проницаемостью подскважинной породной "пробки" и призабойной части рабочего интервала ПДС. Это приводит к быстрому подъему уровня воды в скважине и остановке (частичной или полной) газовыделения. Такой вывод подтверждается опытом подработки лавами пласта m_3 поверхностных дегазационных скважин №№ МТ–209 и Щ–1348, заданных соответственно в пришарнирной и бортовой частях вторичной синклинальной складки.

1 – нецементированные пески; 2 – известняки; 3 – песчаники.
 Рис. 1 – Сравнение кривых зависимости относительной фазовой проницаемости от насыщенности s.

В скважинах установился высокий уровень воды и в работу они не включились: № МТ–209 — дала нулевой приток газа, а № Щ–1348 — совершенно незначительный — от 0,1 до 0,3 м³/мин.

Ввиду отсутствия технических возможностей понизить уровень воды скважины оказались не работоспособны.

Это заставляет еще раз подчеркнуть, что не только высокий уровень природной постдеформационной, но даже и техногенной разуплотненности (пришарнирная зона синклинальной складки или мульда сдвижения в пришарнирной зоне синклинальной складки) угленосной толщи с высокой газонасыщенностью еще не является гарантией эффективной работы ПДС, как на предвари-

тельном (заблаговременная дегазация массива), так и на последующих этапах (после подработки ПДС). Степень насыщенности пор и трещин отдельных площадей рассматриваемого типа коллекторов во многом определяется их расположением относительно шарниров положительных и отрицательных структур.

Для условий поля шахты им. А.Ф. Засядько эту зависимость можно проиллюстрировать графиками, приведенными на рис. 2 для природного (1 и 2) и техногенного разуплотненного (3) массивов пород угленосной толщи. И не учитывать этот фактор нельзя. Без наличия технических средств осушения эффективность ПДС, пробуренных в пришарнирных зонах отрицательных деформационных структур (синклинальные складки) будет низкой или даже нулевой.

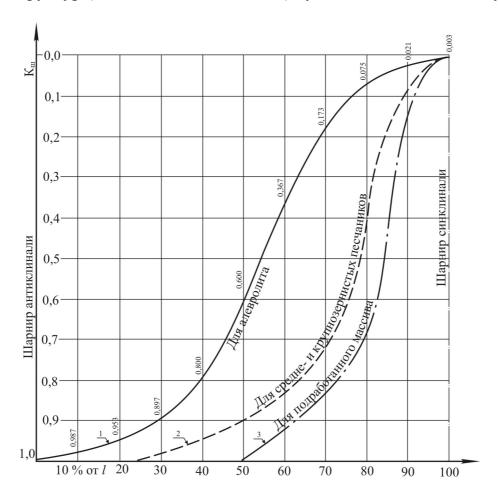


Рис. $2 - \Gamma$ рафики зависимости значений шарнирного коэффициента $k_{\rm m}$ от удаленности ПДС от шарнира положительной структуры (для условий пласта m_3 ; ввиду ограниченности фактических данных и трудностей их разграничения по литотипам пород рабочего интервала ПДС имеют прогнозно-предварительный характер)

Фациальные особенности формирования газоносного горизонта, которыми контролируются состав, зернистость, тип цементирующего материала, а, следовательно, его пористость, газоемкость и проницаемость, можно перевести в числовые характеристики палеопотоков, в условиях которых он формировался.

Наиболее рационально эту работу можно выполнить по методике, предложенной в работе [11]. Как показала практика, она дает возможность получить

ожидаемые коллекторские свойства стратиграфического горизонта, хорошо коррелирующиеся с его фактическими характеристиками.

Литологическими особенностями толщи, перекрывающей горизонт с удовлетворительными коллекторскими характеристиками, определяется возможность в принципе накопления и удержания газа в трещинно-поровом коллекторе. Чем более мощный, более пластичный, а, следовательно, и менее трещиноватый слой пород перекрывает потенциально газоносный горизонт, тем более благоприятные условия создаются для накопления в нем газа и последующего повышения его пластового давления. О влиянии интенсивности деформационных процессов на экранирующие свойства пород "покрышки" было сказано выше.

Из других факторов, существенно влияющих на газонасыщенность коллектора, необходимо особо выделить его мощность и насыщенность углистыми и угольными пропластками, рассеянным органическим веществом (РОВ), углистыми и угольными пленками. Влияние этого фактора на качество коллектора и эффективность работы ПДС проявляется особенно сильно после техногенного воздействия (подработка, гидроразрыв, гидроимпульсное воздействие). Разуплотнение массива и отбор газа из коллектора снижает пластовое давление и автоматически включает процесс десорбции газа. При неуправляемом давлении газа на забой ПДС, этот процесс сопровождается выносом в скважину угольного и породного шлама, что может очень быстро вывести ее из рабочего состояния. Особенно интенсивно этот процесс проявляется при подработках на интервалах залегания углистого сланца, что объясняется его высокой склонностью к тонколистоватому расслоению с образованием очень большой удельной поверхности, обеспечивающей интенсивную десорбцию газа.

Влияние этого фактора проявляется и в другом аспекте. Алевролиты, имеющие большую насыщенность РОВ, угольными пленками, линзочками и слойками (десять процентов и более органики от веса породы) после подработки обеспечивают более высокую газоотдачу, чем смежные слои более пористых песчаников, но с более низким или нулевым содержанием органики. И это обстоятельство нужно обязательно учитывать при расчетах дебита подработанных ПДС. Значимость этих двух факторов предлагается оценивать величиной коэффициента расчетной мощности органической массы рабочего (перфорированного) интервала (K_m^0):

$$K_{m}^{0} = \sum_{1}^{n} m_{n}^{1...n} (1 - A_{n}^{1...n}) + \sum_{1}^{n} m_{y}^{1...f} (1 - A_{y}^{1...f})$$
(3)

где $m_n^{1...n}$ — мощности слоев породы (от 1 до n) рабочего интервала ПДС, м; $A_n^{1...n}$ — зольности слоев породы (от 1 до n) рабочего интервала ПДС, %;

 $m_{1y}^{1...f}$ — мощности прослоев, пропластков и пластов углей и углистых сланцев (от 1 до f) рабочего интервала ПДС, м;

 $A_y^{1...f}$ - зольности прослоев, пропластков и пластов углей и углистых сланцев (от 1 до f) рабочего интервала ПДС, м;

Таким образом, при оценке эффективности работы ПДС необходимо учитывать следующие горно-геологические факторы:

- 1). Положение ПДС относительно структурно-тектонических элементов шахтного поля, включая параметры складок (антиклинальных и синклинальных), расстояние между ПДС и апикальной (купольной) частью локальной антиклинальной складки или донной частью синклинальной локальной складки, кривизну локальной складки. Благоприятные условия для скопления свободного метана при подработке и надработке углепородного массива формируется в апикальной части антиклинальных локальных складок и на крыльях синклинальных локальных складок. На этих участках эффективность работы ПДС минимальная.
- 2). Положение ПДС относительно залегания и характеристики пород-"покрышек" в подработанном углепородном массиве. Наиболее благоприятный для сохранения техногенной залежи газа комплекс пород-"покрышек" известняк перекрытый аргиллитом. Известняк, как прочная порода-каркас, препятствует распространению деформаций разрушения со стороны выработанного пространства, а аргиллит, при отсутствии трещин является непроницаемым экраном. Чем более мощный комплекс известняк-аргиллит залегает выше основной кровли разрабатываемого угольного пласта, тем более эффективно работают ПДС.
- 3). Литологические особенности песчаников, залегающих в кровле разрабатываемого угольного пласта. Наиболее благоприятными, для накопления газа являются стержневые участки палеопотоков, в котрых формирование песчаников характеризуется повышенными значениями пористости, гранулометрического состава, низким содержанием глинистых минералов. эффективность работы ПДС зависит от ее положения относительно стержневого участка палеопотока, выделяемого по карте относительной мощности песчаника.

СПИСОК ЛИТЕРАТУРЫ

- 1. В.В. Бобрышев. Некоторые особенности морфологии и попутного освоения газоносных структур шахтных полей. // Сборник материалов заседаний научно-технического совета Донбасского научного центра Академии горных наук Украины, отделение угля, горючих сланцев и торфа, г. Донецк, июнь 1995, с. 71-82.
- 2. В.А. Баранов, В.В. Лукинов, В.В. Бобрышев. Гипотеза формирования горно-геологических условий поля шахты им. А.Ф. Засядько. // Межведомственный сборник научных трудов ИГТМ НАНУ, г. Днепропетровск, 2002 г., Вып 37. с. 69-73.
- 3. Е.Л. Звягильский, В.В. Бобрышев, В.В. Бобрышев. Эффект природного антигазового гидробарьера и его роль в формировании газового баланса лавы и особенностей работы поверхностных дегазационных скважин. // Межведомственный сборник научных трудов ИГТМ НАНУ, г. Днепропетровск, 2002 г., Вып 37. с. 162-176.
- 4. А.Ф. Булат, В.В. Лукинов, Е.Л. Звягильский и др. Дегазация углепородного массива на шахте им. А.Ф. Засядько скважинами, пробуренными с поверхности. // Межведомственный сборник научных трудов ИГТМ НАНУ, г. Днепропетровск, 2002 г., Вып 37. с. 51.
- 5. Забигайло В.Е., Лукинов В.В., Пимоненко Л.И., Сахневич Н.В. Тектоника и горно-геологические условия разработки угольных месторождений Донбасса. Киев: Наукова думка, 1994 г. 152 с.
- 6. Г. Вижье. К вопросу о механике горных пород. // Сборник докладов VI симпозиума по бурению, взрывчатым веществам, взрывным работам и исследованию физико-механических свойств горных пород, г. Ролла (США), 1961 г., Гос. научно-техническое издательство литературы по горному делу. Москва, 1962 г., с. 471-473.
- 7. В.В. Лукинов, В.А. Баранов, Н.Э. Капланец. Методика построения карт газоэкранирующих интервалов на примере шахты им. А.Ф. Засядько. // Межведомственный сборник научных трудов ИГТМ НАНУ, г. Днепропетровск, 2002 г., Вып 37. с. 57-61.

- 8. В.Г. Ильюшенко, Д.П. Гуня, В.В. Бобрышев и др. исследование напряженно-деформированного массива горных пород в зонах антиклинально-синклинальной нагруженности. // Сборник научных работ № 8 Донецкого НТУ "Проблемы горного давления", г. Донецк, 2002 г., с. 72-80.
 - 9. Г.Б. Пыхачев, В.Г. Исаев. Подземная гидравлика. М.: Недра, 1979 г., с. 79
- 10. В.В. Лукинов, А.П. Клец, В.В. Бобрышев и др. Фильтрационные параметры коллектора углепородного массива, подработанного горными выработками. // Межвед. сборник научных трудов ИГТМ НАН Украины г.Днепропетровск, 2002 г. Вып. 37. с. 74-79.
- 11. Забигайло В.Е., Лукинов В.В., Широков А.З. Выбросоопасность горных пород Донбасса. Киев: Наукова думка, 1983 г. 286 с.

УДК 622.272.8:533.6

Л.В. Байсаров, М.А. Ильяшов, С.В. Янко, С.Г. Лунев

АЭРОГАЗОВЫЕ АСПЕКТЫ ОБЕСПЕЧЕНИЯ РОСТА ПРОИЗВОДСТВЕННОЙ МОЩНОСТИ ШАХТЫ

Розглянуто високоефективна технологія видобутку вугілля у високозагазованній шахті в складних гірничо-геологічних умовах. Запропоновано комплекс заходів по вирішенню проблем для нормалізації аерогазової обстановки.

AIR-GAS ASPECTS MAINTENANCE GROWTH OF MINE CAPACITY

The highly effective technology of production coal in high gas condition to mine in difficult mining-geological conditions is considered. The complex of measures under the decision of problems for normalization air-gas of conditions is offered.

В последние годы в печати часто обсуждается вопрос целесообразности наращивания производственной мощности шахт выше проектных показателей. Особенно остро этот вопрос стал муссироваться в связи с авариями, происшедшими в 1999-2002 г.г., сопровождавшимися групповыми несчастными случаями. Однако сводить проблемы отрасли к превышению проектной мощности шахт не только не корректно, но и не профессионально.

Установленная производственная мощность шахты при определенном технико-экономическом обосновании может отличаться от утвержденной проектной мощности и является текущим управленческим решением, учитывающим экономическое положение предприятия и соответствие заложенных при проектировании инженерных решений фактическим объемам добычи. Под производственной мощностью горного предприятия понимается возможный годовой (суточный) выпуск продукции или объем добычи в номенклатуре и ассортименте, соответствующим фактическому выпуску для отчетного периода (для планового периода предусмотренным планом), и который может не соответствовать проектной. Определение этой мощности производится по минимальной пропускной способности одного или нескольких ведущих технологических процессов основного производства. И именно устранение этих узких мест и целенаправленная работа по увеличению производственной мощности шахты при безусловном соблюдении норм и требований ПБ и ПТЭ должны быть основными задачами менеджмента угледобывающих предприятий на современном этапе вывода отрасли из кризиса.